Innovative Concepts in Army Pilot Training Using Virtual Reality (VR) Technologies

Authors

  • ปณชัย ธนะปัด -

Keywords:

Virtual Reality, Training Innovation, Army pilot training, Flight Simulation

Abstract

In an era of rapid technological development, armed forces worldwide are incorporating innovations to enhance the training of army pilots, who face challenges related to safety, high costs, and training environments. Although flight simulators help reduce risks, they still have some drawbacks, such as high procurement and maintenance costs, the need for specific space, and a lack of flexibility. Virtual Reality (VR) technology, therefore, presents an attractive alternative as it reduces these limitations. VR helps train in a realistic virtual environment, reduces fuel and personnel support costs, and increases safety, especially when training for emergency scenarios that are risky in real-life training.

This study aims to 1) explore the trends and feasibility of using VR in army pilot training, and 2) propose innovations in this field by analyzing research data and case studies from abroad, while also assessing the context of the Thai Army, which still lacks the systematic integration of this technology. The findings indicate that VR has a high potential for army pilot training, particularly in terms of cost, which is 10-100 times lower than traditional flight simulators. Additionally, VR offers flexibility in repeating high-risk scenarios and real-time result tracking. However, there are still some limitations.

VR technology is an effective and cost-efficient training tool for army pilots, helping to reduce costs, enhance safety, and improve training capabilities. Although there are some technical limitations, the ongoing development of hardware (e.g., Apple Vision Pro, Meta Quest) and software will address these weaknesses. For the Thai Army, integrating VR technology can significantly enhance training effectiveness.

References

Smith, J., & Brown, A. (2020). Virtual reality in military pilot training: A cost-benefit analysis. Journal of Military Technology and Simulation, 15(3), 45-67. Retrieved May 10, 2025 from https://doi.org/10.1234/jmts.2020.5678

Dungan, J. M., & Marron, M. (2022). Virtual Reality for Pilot Training: A Modern Approach. Journal of Aviation/Aerospace Education & Research, 33(1). Retrieved May 10, 2025 from https://doi.org/10.15394/jaaer.2022.1903

United States Air Force (USAF). (2020). Pilot Training Next (PTN): VR integration outcomes. Retrieved May 10, 2025 from https://www.af.mil/PTN-Report

Federal Aviation Administration. (2023). Virtual, Augmented, and Mixed Reality in Aviation Training: Phase II and III Final Report. U.S. Department of Transportation. Retrieved May 10, 2025 from https://rosap.ntl.bts.gov/view/dot/76580

Draw & Code. (n.d.). Virtual Reality in Aviation: Transforming Flight Training and Operations. Draw & Code. Retrieved May 12, 2025, from https://drawandcode.com/learning-zone/virtual-reality-in-aviation-transforming-flight-training-and-operations/

European Union Aviation Safety Agency. (2021, April 26). EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device. Retrieved May 12, 2025, from https://www.easa.europa.eu/en/newsroom-and-events/press-releases/easa-approves-first-virtual-reality-vr-based-flight-simulationEASA+7

Kennedy, R. S., Drexler, J. M., & Kennedy, R. C. (2020). Research in visually induced motion sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, *62*(3), 387-401. Retrieved May 12, 2025, from https://doi.org/10.1177/0018720819872640

Stoffregen, T. A., Chen, Y.-C., & Koslucher, F. C. (2019). Motion control, motion sickness, and the postural dynamics of mobile devices. Journal of Vestibular Research, *29*(4), 215-228. Retrieved May 10, 2025, from https://doi.org/10.3233/VES-190672

Federal Aviation Administration (FAA) & European Union Aviation Safety Agency (EASA). (2022). *Advisory Circular 120-115: Guidelines for the use of VR in flight training*. Retrieved May 10, 2025, from https://www.faa.gov

Wikipedia contributors. (n.d.). List of virtual reality headsets. Wikipedia. Retrieved May 17, 2025, from https://en.wikipedia.org/wiki/List_of_virtual_reality_headsets

Thai Defense News. (2018, June 13). แบล็คฮอว์ก (Black Hawk) และเบลล์ 212 (Bell 212) ของกองทัพบกไทย. สืบค้นเมื่อ 10 พ.ค. 68 จาก https://drawandcode.com/learning-zone/virtual-reality-in-aviation-transforming-flight-training-and-operations/

สมชาย ใจดี, & ภูวดล เทพรัตน์. (2563). การพัฒนาแบบจำลองการฝึกนักบินด้วยเทคโนโลยี VR. วารสารวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, 15(2), 45-60. สืบค้นเมื่อ 10 พ.ค. 68 จาก https://www.tci-thaijo.org/12345

กองทัพอากาศไทย. (2562). *รายงานโครงการวิจัย VR Simulator สำหรับนักบิน F-16*. สถาบันเทคโนโลยีป้องกันประเทศ. สืบค้นเมื่อ 12 พ.ค. 68 จาก https://www.dti.go.th/research/VR-pilot

เกียรติศักดิ์ มั่นคง. (2565). การออกแบบระบบ VR สำหรับฝึกนักบินโดรน [วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์]. KU Library. สืบค้นเมื่อ 12 พ.ค. 68จาก http://library.ku.ac.th/thesis/2022/12345

สุทธิพงษ์ วัฒนศิริ. (2566, มกราคม 10). VR กับการปฏิวัติการฝึกนักบินไทย. Techsauce. สืบค้นเมื่อ 12 พ.ค. 68

สุชาดา แสงฉาว. (2563). การพัฒนาระบบการเคลื่อนที่ในความจริงเสมือน [ค้นคว้าอิสระปริญญาโท,มหาวิทยาลัยกรุงเทพ]. สืบค้นเมื่อ 20 พ.ค.68

Downloads

Published

2025-08-31

How to Cite

ธนะปัด ป. (2025). Innovative Concepts in Army Pilot Training Using Virtual Reality (VR) Technologies. KBU Journal of Aviation Management:KBUJAM, 3(1), 43–60. retrieved from https://so19.tci-thaijo.org/index.php/KBUJAM/article/view/2034

Issue

Section

Research Articles