A Bibliometric Analysis of Automated System Maintenance Tools
Keywords:
Maintenance Tools, Simulation-Based, Reliability, Iot, Bigdata AnalyticsAbstract
The evolution of automated system maintenance tools has been pivotal in advancing industrial efficiency, reliability, and resilience. This study offers a bibliometric analysis spanning six decades (1964–2024), encapsulating its intellectual growth, milestones, and emerging trends. Early works established foundational methodologies like simulation-based optimization, while recent advancements incorporate AI, IoT, and big data analytics. The analysis reveals exponential growth in research output post-2010, emphasizing predictive maintenance and Industry 4.0 paradigms. Challenges include legacy system integration, scalability for SMEs, and standardization. This study provides a roadmap for future research, fostering innovations in autonomous maintenance systems for increasingly complex operational landscapes.
References
Alrabghi, A., & Tiwari, A. (2013, April). A review of simulation-based optimisation in maintenance operations. In 2013 UKSim 15th international conference on computer modelling and simulation (pp. 353-358). IEEE. DOI: https://doi.org/10.1109/UKSim.2013.27
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. DOI:
https://doi.org/10.1016/j.cie.2019.106024
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology, and applications. Mechanical Systems and Signal Processing, 42(1-2), 314–334. DOI:
https://doi.org/10.1016/j.ymssp.2013.06.004
Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: A review. The International Journal of Advanced Manufacturing Technology, 50(1-4), 297–313. DOI: https://doi.org/10.1007/s00170-009-2482-0
Scott, M. J., Verhagen, W. J., Bieber, M. T., & Marzocca, P. (2022). A systematic literature review of predictive maintenance for defence fixed-wing aircraft sustainment and operations. Sensors, 22(18), 7070. https://doi.org/10.3390/s22187070
Werbińska-Wojciechowska, S., & Winiarska, K. (2023). Maintenance performance in the age of Industry 4.0: A bibliometric performance analysis and a systematic literature review. Sensors, 23(3), 1409. https://doi.org/10.3390/s23031409
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. DOI: https://doi.org/10.1016/j.ymssp.2018.05.050
Zheng, P., Lin, T. J., Chen, C. H., & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150. DOI: https://doi.org/10.1007/s11465-018-0499-5