

From Experience to Intention: How Brand Experience Drives New Energy Vehicles (NEVs) Purchase Intention via Perceived Value and Brand Identification

Yilin Wang¹, Xuegang Zhan^{2*}, Nutteera Phakdeephirot³

¹Rattanakosin International College of Creative Entrepreneurship, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand

Email: 1672110471106@rmutr.ac.th

²*Rattanakosin International College of Creative Entrepreneurship, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand
Corresponding author: xuegang.zhan@rmutr.ac.th (Corresponding authors)

³Rattanakosin International College of Creative Entrepreneurship, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170, Thailand

Email: nutteera.pha@rmutr.ac.th

Abstract: This study examines how brand experience influences consumers' purchase intention toward new energy vehicles (NEVs) in the context of Xiaomi Auto, and tests the mediating roles of perceived value and brand identification. Survey data were collected from 396 adult potential NEV consumers in Chengdu, China using a combined online–offline approach, and analyzed via confirmatory factor analysis and structural equation modeling with bootstrapping. Results indicate that brand experience significantly increases perceived value ($\beta = 0.660$, $p < .001$) and brand identification ($\beta = 0.589$, $p < .001$). Both perceived value ($\beta = 0.223$, $p = .002$) and brand identification ($\beta = 0.195$, $p = .003$) positively predict purchase intention, while brand experience also retains a significant direct effect on purchase intention ($\beta = 0.358$, $p < .001$). Bootstrapping confirms two significant indirect effects via perceived value ($\beta = 0.147$, 95% CI [0.056, 0.259]) and brand identification ($\beta = 0.115$, 95% CI [0.043, 0.203]), indicating partial mediation. The findings highlight that experience-centered branding shapes NEV purchase intention through both value-based evaluation and identity-based connection, offering actionable guidance for ecosystem brands designing multi-touchpoint experiences to convert consumer

attention into purchase intention.

Keywords: Brand Experience; Perceived Value; Brand Identification; Purchase Intention; New Energy Vehicles; Xiaomi Auto; S–O–R Framework

1. Introduction

The global transition toward low-carbon mobility has accelerated the strategic repositioning of the automotive industry, with new energy vehicles (NEVs) becoming a central arena where environmental commitments, industrial upgrading, and consumer markets intersect (Li, 2025). In China, NEVs have been elevated from an emerging technology sector to a key pillar supporting transportation decarbonization and high-quality development, guided by national plans that emphasize innovation-driven growth and the modernization of the industrial system (Liu & Xie, 2025). As the market expands and penetration increases, the competitive landscape is shifting from policy-led diffusion to demand-driven competition, in which brands must persuade consumers not only through technical performance but also through psychologically compelling value propositions (Harahap et al., 2024).

In this new stage, purchase decisions for NEVs are becoming less explainable by traditional “attribute-centric” logic alone (e.g., price, range, and safety). NEVs especially smart electric vehicles are high-involvement, technology-intensive, and symbolically loaded products (Zhang et al., 2024). Consumers’ evaluations are therefore shaped by a broader decision ecology that includes experiential impressions, emotional resonance, and identity signaling formed

across multiple brand touchpoints (Zha et al., 2022). Experience economy theory suggests that when functional attributes become increasingly comparable, competitive differentiation shifts toward orchestrated experiences that are memorable and meaning-rich (Pine & Gilmore, 2013). In branding research, brand experience has been conceptualized as a multidimensional set of sensory, affective, cognitive, and behavioral responses elicited by brand-related stimuli such as product design, marketing communications, interaction environments, and usage scenarios (Li & Chung, 2025; Zha et al., 2025). Empirical evidence across industries indicates that favorable brand experiences can meaningfully shape consumer attitudes and behavioral intentions (Sang & Cuong, 2025; Tahir et al., 2024), suggesting that experience may operate as a strategic “conversion engine” in markets where rational evaluation and emotional judgment co-exist.

This experience-based perspective is particularly relevant for digitally native brands entering the NEV market. Xiaomi Auto offers a timely context because it represents a technology ecosystem brand extending into automobiles with an explicit strategy to build an integrated “human–vehicle–home” intelligent experience system (Huang, 2025). As a newcomer with strong attention and visibility, Xiaomi Auto’s early-stage market diffusion depends heavily on

how potential consumers form perceptions and meanings before actual ownership and long-term usage (Wang, 2025). Compared with existing owners whose brand attitudes may have stabilized through repeated use, potential consumers are still constructing their cognitive and emotional evaluations through brand communications, product reveal events, showroom encounters, digital content, community participation, and imagined usage scenarios (Rao et al., 2024). This makes the pre-purchase stage an analytically valuable window for uncovering how brand experience translates into purchase intention.

Despite the growing importance of experience-driven competition, the mechanism through which brand experience shapes purchase intention in the NEV context remains under-explored—especially for high-involvement, high-uncertainty products with long decision cycles. Prior studies have confirmed positive associations between brand experience and behavioral intentions in various settings, but evidence is more concentrated in low-involvement consumption or service contexts (Castro-González et al., 2025; Na et al., 2023), while less is known about (a) how experience is psychologically processed in durable technology products and (b) how experience operates among potential consumers during market entry. In NEVs, consumers must translate experiential cues into judgments about whether the product is “worth it” (value evaluation), while also deciding whether the brand aligns with their self-concept, lifestyle aspirations, and symbolic preferences

(identity connection) (Tran & Nguyen, 2022). These dual mechanisms—cognitive evaluation and identity-based resonance—are theoretically plausible, yet they are rarely examined together in a parsimonious integrated model within the NEV setting.

To address this gap, the present study adopts the stimulus–organism–response (S–O–R) framework to theorize how brand experience influences NEV purchase intention through internal psychological processes. Under this framework, brand experience is conceptualized as an external stimulus (S) that activates consumers’ organism states (O), which then shape behavioral response (R). Specifically, we model two parallel organism pathways: perceived value (a cognitive-evaluative pathway) and brand identification (an affective/identity pathway). This dual-path structure reflects the idea that brand experience may simultaneously enhance consumers’ overall benefit–cost judgments and strengthen psychological affiliation with the brand—both of which can increase purchase intention. By integrating these mediators, the study provides a clearer explanation of how experience-driven branding can convert attention into intention in the early diffusion stage of an NEV brand.

Empirically, this study focuses on potential consumers in Chengdu, a city with relatively strong NEV exposure and supportive infrastructure contexts that facilitate repeated contact with NEV information and brand touchpoints. Using survey data and structural equation modeling, we test (1) whether

brand experience directly enhances purchase intention, (2) whether brand experience increases perceived value and brand identification, and (3) whether perceived value and brand identification mediate the relationship between brand experience and purchase intention.

This research offers several contributions. First, it extends brand experience theory to a high-involvement, technology-intensive durable product category, highlighting how experiential perceptions can matter even before ownership. Second, it advances mechanism-based explanation by jointly examining value evaluation and identity connection as parallel mediating processes, clarifying the internal “translation” of experience into intention. Third, by situating the analysis in the context of a digitally native ecosystem brand entering the automotive market, it provides insight into how multi-touchpoint digital experiences and ecosystem narratives may shape early-stage consumer psychology in NEVs.

The remainder of this paper is organized as follows. The next section reviews the relevant literature and develops the hypotheses based on experiential marketing, perceived value theory, brand identification theory, and the S–O–R framework. The subsequent section describes the research design, measures, and analytical approach. The results section reports the measurement and structural model findings, followed by a discussion of theoretical and managerial implications, limitations, and future research directions.

2. Literature Review

Brand experience (BE) refers to consumers' internal responses evoked by brand-related stimuli across touchpoints, including product design, brand communications, retail environments, and interactions, typically involving sensory, affective, cognitive, and behavioral dimensions (Pina & Dias, 2021). This perspective builds on experiential marketing and the broader experience economy view that value creation increasingly shifts from functional utility to holistic experience. In technology-intensive and high-involvement categories, experience is not a decorative add-on but a diagnostic cue that helps consumers interpret innovation, reduce uncertainty, and form coherent brand impressions under information complexity.

Existing studies indicate that BE is especially influential when consumers face: (a) high perceived risk and long decision cycles, (b) multi-attribute trade-offs, and (c) symbolic meanings associated with technology, lifestyle, and identity (Alyahya et al., 2023; Baghel, 2023). New energy vehicles (NEVs) meet these conditions, as purchase decisions often require consumers to integrate functional performance, intelligent features, cost considerations, and the brand's innovation narrative (Wei et al., 2024). For digital-native ecosystem brands such as Xiaomi Auto, experience is constructed not only through product or test-drive encounters but also through digitally mediated touchpoints (e.g., online launches, interactive content, brand communities), which can shape consumers' perceptions before ownership (Chen, 2025).

Perceived value (PV) is commonly defined as consumers' overall assessment of benefits relative to costs, representing a subjective, context-dependent judgment rather than an objective attribute (Blut et al., 2023). Beyond the classic benefit-cost view, research increasingly emphasizes the multidimensionality of PV, typically including functional value (quality/performance), price/value-for-money, emotional value, and social value. This multidimensional structure is highly relevant for NEVs, where consumers simultaneously evaluate technological usefulness (e.g., intelligence and safety), economic rationality (e.g., price and long-term cost), and experiential/affective benefits (e.g., enjoyment, confidence), as well as social-symbolic outcomes (e.g., being "tech-forward" or "environmentally responsible").

In experience-driven markets, PV is also a key psychological "translation" mechanism: brand stimuli and experiential encounters become behaviorally meaningful when consumers interpret them as "worth it (Lian et al., 2025)." Thus, PV is frequently conceptualized as a proximal predictor of purchase intention and a mediator linking upstream experiential cues to downstream behavioral tendencies.

Brand identification (BI) originates from social identity logic: individuals may incorporate symbolic objects (including brands) into their self-concept when they perceive value congruence, self-brand fit, or aspirational alignment (Gaustad & Warlop, 2025). Consumer-brand identification reflects a

perceived oneness with a brand and a sense of belonging, through which consumers express "who I am" or "who I want to be (Moorlock et al., 2023)."

BI is particularly salient in NEV consumption because NEVs often carry symbolic meanings beyond transportation—such as innovation orientation, sustainability values, and future lifestyle imagination (Wang & Tian, 2023). For emerging technology brands, identification may also develop via community culture, participatory narratives, and ecosystem affiliation (Méndez-Lazarte et al., 2025). Xiaomi's established fan culture and "ecosystem" logic can provide identity resources that transform pre-purchase engagement into psychological attachment (Zhao & Yi, 2023).

The stimulus-organism-response (S-O-R) framework posits that external stimuli do not directly determine behavior; rather, stimuli influence internal organismic states (cognitive and affective processes), which then shape behavioral responses (Hochreiter et al., 2023). In consumer research, this framework is widely used to explain how marketing and experience cues influence psychological evaluations and behavioral intentions (Jayadi et al., 2022). In the NEV context, brand experience functions as a multidimensional external stimulus, while PV and BI represent two complementary organismic mechanisms: a cognitive evaluation pathway (PV) and an identity/affective pathway (BI). Purchase intention (PI) represents the response outcome. This mapping aligns with your study's logic of examining how BE shapes PI through value

judgment and identity connection.

Brand experience provides consumers with concrete and emotionally salient cues that improve brand accessibility in memory, enhance confidence in decision-making, and increase the perceived attractiveness of the brand (Husain et al., 2022). In high-involvement categories, positive experiences—whether from immersive offline encounters or coherent digital touchpoints—can strengthen consumers' willingness to consider the brand as a serious option (Muthaffar et al., 2024). Therefore:

H1: Brand experience positively influences purchase intention toward Xiaomi Auto NEVs.

Brand experience can enhance consumers' value judgments by making functional benefits more "felt" (e.g., intuitiveness of intelligent features), reducing uncertainty, and increasing perceived value-for-money through compelling demonstrations and narratives (DelVecchio et al., 2024). When experience provides clarity, enjoyment, and confidence, consumers are more likely to judge the product as worthwhile (Rocklage et al., 2025). Thus:

H2: Brand experience positively influences perceived value.

Perceived value is a direct antecedent of purchase intention because it summarizes consumers' overall trade-off judgment (Gandhi et al., 2023). When consumers believe the NEV delivers superior functional, emotional, and social value relative to cost, they become more willing to purchase (Hu et al., 2025). Accordingly:

H3: Perceived value positively

influences purchase intention.

Brand experience can also foster identification by communicating brand personality and values, enabling consumers to perceive self-brand congruence and symbolic fit (Acar et al., 2024). Experiences that emphasize innovation ethos, lifestyle meaning, and community participation encourage consumers to see the brand as representing "people like me" or "who I aspire to be." Therefore:

H4: Brand experience positively influences brand identification.

When consumers identify with a brand, they develop stronger psychological commitment, trust, and a tendency to support the brand, which increases purchase intention—especially in uncertain, high-cost decisions such as vehicle purchase (Irshad et al., 2024). Hence:

H5: Brand identification positively influences purchase intention.

In S-O-R logic, BE (stimulus) shapes PI (response) largely through organismic mechanisms. PV represents a cognitive evaluation route—experience increases "worth," which drives intention. BI represents an identity route—experience increases "oneness," which also drives intention. Therefore:

H6: Perceived value mediates the relationship between brand experience and purchase intention.

H7: Brand identification mediates the relationship between brand experience and purchase intention.

In summary, prior research supports (a) brand experience as a critical driver of behavioral intentions (Li et al., 2023), (b) perceived value as a key evaluative mechanism translating experience into

action (Tang & Son, 2025), and (c) brand identification as an identity-based mechanism linking brand meaning to consumer commitment (Zhang & Liu, 2022). However, in NEV settings—especially for digitally native ecosystem entrants such as Xiaomi Auto—evidence remains limited regarding how pre-purchase experience cues jointly activate these two organismic mechanisms. By integrating perceived value and brand identification as parallel mediators within an S-O-R framework, this study offers a parsimonious explanation of experience-driven purchase intention formation among potential NEV consumers.

3. Methodology

This study surveyed adult consumers (aged 18 and above) in Chengdu, China who exhibited potential purchase intention toward new energy vehicles (NEVs), with Xiaomi Auto used as the focal brand context. Data were collected through a combined online–offline questionnaire approach. A pilot test ($n = 150$) was conducted to refine item wording and improve clarity prior to the main study. In the formal survey, 420 questionnaires were returned; after data screening, 396 valid responses were retained (effective response rate: 94.29%). A non-probability sampling strategy was employed, primarily convenience sampling supplemented by snowball recruitment via universities, firms, commercial settings, and online platforms.

All constructs were measured using established multi-item scales adapted to the NEV/Xiaomi Auto context, and a

translation–back-translation procedure was applied to ensure semantic equivalence. The questionnaire comprised 25 items covering four core constructs—brand experience (BE; four-dimensional), perceived value (PV), brand identification (BI), and purchase intention (PI)—measured on five-point Likert scales (1 = strongly disagree, 5 = strongly agree). Data analysis was conducted using SPSS 26.0 and AMOS 24.0: descriptive statistics and reliability (Cronbach's α) were first examined, followed by confirmatory factor analysis (CFA) to assess convergent and discriminant validity and overall measurement-model fit. Structural equation modeling (SEM) was then used to test the hypothesized relationships, and bootstrapping was applied to evaluate the mediating effects of PV and BI. To assess common method bias, Harman's single-factor test was performed; the first factor accounted for less than 40% of the total variance, suggesting that common method bias was unlikely to pose a serious threat.

4. Results

Table1 shows the sample ($N = 396$) was gender-balanced, with 49.0% male ($n = 194$) and 51.0% female ($n = 202$). Respondents were predominantly young to middle-aged: 26–35 (31.1%, $n = 123$) and 36–45 (30.6%, $n = 121$) constituted the largest groups, followed by 18–25 (21.9%, $n = 87$), while those aged 46–55 (9.1%, $n = 36$) and 56+ (7.3%, $n = 29$) were less represented. In terms of education, the sample was relatively well educated, with 33.8% holding a bachelor's degree ($n = 134$) and 24.5% an associate degree ($n = 97$), whereas

13.6% reported high school or below (n = 54) and 12.1% a master's degree or above (n = 48). Monthly income was concentrated at the lower and upper-middle ranges: 32.1% earned RMB 8,000–11,999 (n = 127) and 29.3% earned below RMB 3,000 (n = 116), with 19.7% earning RMB 12,000+ (n = 78). Importantly, more than half of

the respondents intended to purchase an NEV within one year (54.8%, n = 217), and a substantial proportion already owned Xiaomi ecosystem products (62.9%, n = 249), indicating that the sample was highly relevant for examining purchase intention toward Xiaomi Auto within the broader Xiaomi ecosystem context.

Table 1 Descriptive Statistics of Sample Characteristics

Sample Characteristics	Category	Frequency	Percentage (%)
Gender	Male	194	49.0
	Female	202	51.0
Age	18–25	87	21.9
	26–35	123	31.1
	36–45	121	30.6
	46–55	36	9.1
	56 and above	29	7.3
Education	High school or below	54	13.6
	High school/technical secondary	63	15.9
	Associate degree	97	24.5
	Bachelor's degree	134	33.8
	Master's degree or above	48	12.1
Monthly income (RMB)	Below 3,000	116	29.3
	3,000–4,999	22	5.6
	5,000–7,999	53	13.4
	8,000–11,999	127	32.1
	12,000 and above	78	19.7
Intention to purchase NEVs within one year	Yes	217	54.8
	No	64	16.2
	Uncertain	115	29.0
Ownership of Xiaomi ecosystem products	Yes	249	62.9
	No	147	37.1
Total		396	100

Table 2 presents the item-level descriptive statistics indicate that respondents provided full-range responses across all indicators (Min = 1, Max = 5), suggesting adequate variability and no apparent floor or ceiling effects. Mean scores were generally moderate, clustering around

the mid-point of the scale (approximately 3.25–3.45), which implies a neutral-to-slightly-positive evaluation of brand experience (BE items: $M \approx 3.32$ –3.45), perceived value (PV items: $M \approx 3.25$ –3.38), brand identification (BI items: $M \approx 3.29$ –3.43), and purchase intention (PI items: $M \approx$

3.33–3.40). Standard deviations were consistently around 1.07–1.20, reflecting substantial dispersion and meaningful individual differences. Skewness values were small and negative (roughly -0.09 to -0.40), indicating a slight tendency

toward higher agreement, while kurtosis values were negative (about -0.70 to -1.04), suggesting relatively flat (platykurtic) distributions rather than sharply peaked responses.

Table 2 Descriptive Statistics of Measurement Items

Item	Min	Max	Mean	SD	Skewness	Kurtosis
BE1	1	5	3.35	1.114	-0.229	-0.905
BE2	1	5	3.45	1.161	-0.347	-0.907
BE3	1	5	3.40	1.137	-0.314	-0.851
BE4	1	5	3.45	1.127	-0.262	-0.980
BE5	1	5	3.41	1.147	-0.308	-0.869
BE6	1	5	3.42	1.156	-0.398	-0.755
BE7	1	5	3.38	1.097	-0.193	-0.927
BE8	1	5	3.39	1.127	-0.307	-0.855
BE9	1	5	3.34	1.170	-0.220	-0.957
BE10	1	5	3.36	1.160	-0.370	-0.699
BE11	1	5	3.32	1.202	-0.291	-0.921
BE12	1	5	3.36	1.204	-0.319	-0.939
PV1	1	5	3.38	1.124	-0.244	-0.944
PV2	1	5	3.25	1.111	-0.089	-0.988
PV3	1	5	3.35	1.155	-0.215	-1.028
PV4	1	5	3.34	1.072	-0.193	-0.807
PV5	1	5	3.34	1.107	-0.210	-0.892
BI1	1	5	3.29	1.147	-0.116	-1.041
BI2	1	5	3.43	1.113	-0.225	-0.980
BI3	1	5	3.40	1.118	-0.244	-0.879
BI4	1	5	3.40	1.113	-0.171	-0.999
PI1	1	5	3.39	1.172	-0.268	-1.026
PI2	1	5	3.39	1.161	-0.397	-0.831
PI3	1	5	3.40	1.078	-0.359	-0.739
PI4	1	5	3.33	1.112	-0.209	-0.995

Table 3 describes the Pearson correlation matrix among the study variables. Brand experience (BE) is positively and significantly associated with perceived value (PV) ($r = 0.517$, $p < .01$), brand identification (BI) ($r = 0.444$, $p < .01$), and purchase intention (PI) ($r = 0.501$, $p < .01$), indicating that more favorable brand experiences tend to coincide with higher value perceptions, stronger identification, and greater intention to purchase. PV is also positively related to BI ($r = 0.468$, p

$< .01$) and PI ($r = 0.484$, $p < .01$), suggesting that consumers who perceive higher overall value are more likely to identify with the brand and express stronger purchase intention. Likewise, BI shows a significant positive correlation with PI ($r = 0.448$, $p < .01$), implying that stronger consumer–brand identification corresponds to higher purchase intention. Overall, the moderate correlation magnitudes ($r \approx 0.44$ – 0.52) support the theoretical linkages while remaining below

common multicollinearity thresholds, with the proposed model. providing initial evidence consistent

Table 3 Correlation Matrix of Study Variables

Variable	BE_mean	PV_mean	BI_mean	PI_mean
BE_mean	1			
PV_mean	0.517**	1		
BI_mean	0.444**	0.468**	1	
PI_mean	0.501**	0.484**	0.448**	1

Note: ** $p < 0.01$.

Table 4 reports the item analysis and internal consistency results for all constructs. Overall reliability is excellent: the Cronbach's α values are consistently high ($\alpha = 0.926$) across the scales, and the " α if item deleted" statistics remain very similar (approximately 0.922–0.927), indicating that removing any single item would not meaningfully improve reliability and

that the item set is stable. The corrected item–total correlations (CITC) are generally acceptable for most indicators, suggesting that items contribute to their respective constructs; meanwhile, the reported R^2 values are moderate to high (roughly 0.52–0.76), implying that each item shares substantial variance with its underlying construct.

Table 4 Reliability Analysis of Measurement Scales

Construct	Item	Initial CITC	Cronbach's α if Item Deleted	R^2	Cronbach's α
Brand Experience (BE)	BE1	0.335	0.925	0.642	0.926
	BE2	0.351	0.925	0.556	
	BE3	0.304	0.926	0.642	
	BE4	0.336	0.925	0.643	
	BE5	0.312	0.926	0.556	
	BE6	0.33	0.925	0.642	
	BE7	0.358	0.924	0.521	
	BE8	0.327	0.925	0.521	
	BE9	0.299	0.926	0.629	
	BE10	0.37	0.924	0.569	
	BE11	0.323	0.925	0.758	
	BE12	0.319	0.926	0.624	
Perceived Value (PV)	PV1	0.366	0.925	0.618	0.926
	PV2	0.172	0.927	0.592	
	PV3	0.71	0.922	0.595	
	PV4	0.21	0.927	0.554	
	PV5	0.24	0.926	0.521	
Brand Identification (BI)	BI1	0.335	0.925	0.581	0.926
	BI2	0.41	0.924	0.648	
	BI3	0.425	0.924	0.592	
	BI4	0.398	0.924	0.593	

Construct	Item	Initial CITC	Cronbach's α if Item Deleted	R ²	Cronbach's α
Purchase Intention (PI)	PI1	0.38	0.925	0.651	0.926
	PI2	0.355	0.925	0.684	
	PI3	0.405	0.924	0.599	
	PI4	0.389	0.924	0.624	

Table 5 shows the results of the KMO and Bartlett's tests for each construct. The KMO values are high for all scales (0.885–0.896), indicating strong sampling adequacy and suggesting that the correlation patterns among items are sufficiently compact to justify factor analysis. In addition,

Bartlett's tests of sphericity are all statistically significant ($p < .001$), with large chi-square statistics ($\chi^2 = 2334.37$ for BE; 2193.17 for PV; 1035.92 for BI; 1124.53 for PI), indicating that the item correlation matrices significantly depart from an identity matrix.

Table 5 KMO and Bartlett's Tests for Measurement Scales

Statistic	BE	PV	BI	PI
KMO measure of sampling adequacy	0.885	0.895	0.896	0.892
Bartlett's test (Approx. χ^2)	2334.37	2193.17	1035.92	1124.53
Degrees of freedom	66	10	6	6
Significance (p)	< 0.001	< 0.001	< 0.001	< 0.001

Table 6 reports the overall goodness-of-fit statistics for the measurement model. All fit indices meet—and in most cases substantially exceed—the recommended thresholds, indicating an excellent model fit. Specifically, the χ^2/df ratio is 1.132 (< 3.00), suggesting minimal discrepancy between the observed and model-implied covariance matrices. The RMSEA is 0.018 (< 0.08), reflecting

very close approximate fit. In addition, the incremental and absolute fit indices are all strong (GFI = 0.945; AGFI = 0.930; NFI = 0.945; TLI = 0.992; CFI = 0.993), each exceeding the 0.90 criterion. Collectively, these results provide robust evidence that the proposed measurement structure fits the data well, supporting the adequacy of the model for subsequent structural analyses.

Table 6 Measurement Model Fit Indices

Fit Index	χ^2/df	RMSEA	GFI	AGFI	NFI	TLI	CFI
Recommended criteria	< 3.00	< 0.08	> 0.90	> 0.90	> 0.90	> 0.90	> 0.90
Model results	1.132	0.018	0.945	0.930	0.945	0.992	0.993

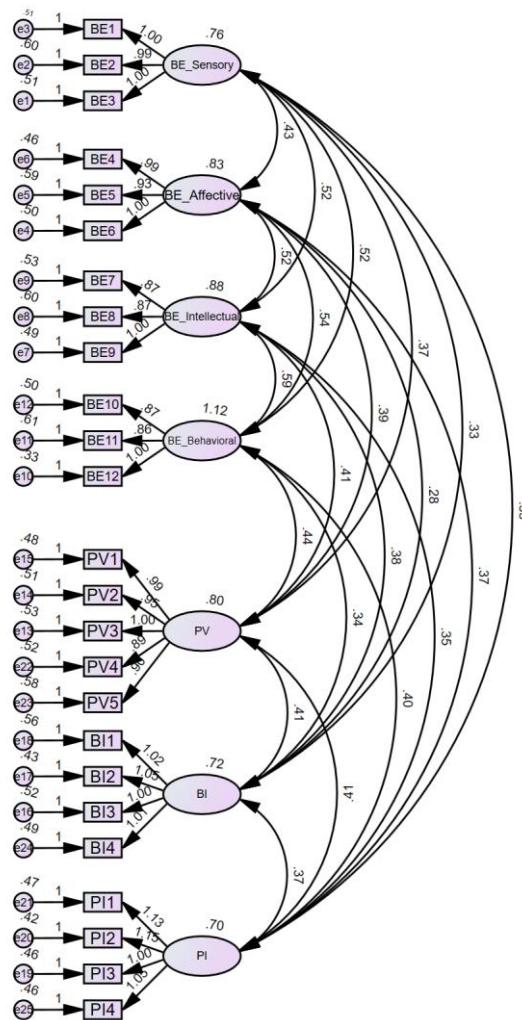

Figure 1 Measurement Model

Table 7 presents the convergent validity results for the measurement model. All indicators exhibit strong standardized factor loadings, ranging from 0.724 to 0.879, exceeding the commonly recommended threshold (≥ 0.70) and indicating that the items reliably represent their intended constructs. Composite reliability (CR) values are consistently high (0.80–0.87), surpassing the 0.70 criterion and demonstrating satisfactory internal consistency at the construct level. In

addition, average variance extracted (AVE) values range from 0.57 to 0.66, all above the 0.50 benchmark, suggesting that each latent construct explains more than half of the variance in its indicators. Collectively, these results provide robust evidence of convergent validity for the four brand experience dimensions, perceived value, brand identification, and purchase intention, supporting the adequacy of the measurement model for subsequent structural testing.

Table 7 Convergent Validity Assessment

Latent construct	Indicators	Standardized loadings	CR	AVE
Sensory brand experience	BE1–BE3	0.744–0.774	0.81	0.59
Affective brand experience	BE4–BE6	0.742–0.799	0.82	0.61
Intellectual brand experience	BE7–BE9	0.725–0.802	0.80	0.58

Behavioral brand experience	BE10–BE12	0.761–0.879	0.85	0.66
Perceived value	PV1–PV5	0.724–0.786	0.87	0.57
Brand identification	BI1–BI4	0.760–0.806	0.85	0.59
Purchase intention	PI1–PI4	0.776–0.827	0.86	0.61

Table 8 reports discriminant validity using the Fornell–Larcker criterion. The diagonal elements (0.748–0.800) represent the square roots of AVE for each latent construct, while the off-diagonal elements are the inter-construct correlations. For discriminant validity to hold, the square root of AVE for each construct should exceed its correlations with other constructs. As shown, each construct's \sqrt{AVE} is higher than its highest correlation with any other construct—for example, sensory brand experience ($\sqrt{AVE} = 0.762$) exceeds its

strongest correlation with intellectual brand experience ($r = 0.633$), and perceived value ($\sqrt{AVE} = 0.775$) exceeds its correlations with purchase intention ($r = 0.556$) and brand identification ($r = 0.541$). Similarly, purchase intention ($\sqrt{AVE} = 0.787$) is greater than its strongest association with perceived value ($r = 0.556$). Overall, these results provide clear evidence of satisfactory discriminant validity, indicating that the constructs are empirically distinct and can be meaningfully analyzed in the subsequent structural model.

Table 8 Discriminant Validity Assessment

Latent construct	1	2	3	4	5	6	7
1 Sensory brand experience	0.762						
2 Affective brand experience	0.538	0.781					
3 Intellectual brand experience	0.633	0.608	0.800				
4 Behavioral brand experience	0.566	0.560	0.596	0.748			
5 Perceived value	0.479	0.481	0.486	0.466	0.775		
6 Brand identification	0.444	0.367	0.471	0.374	0.541	0.768	
7 Purchase intention	0.455	0.483	0.453	0.450	0.556	0.517	0.787

Note: Diagonal elements represent the square roots of AVE; off-diagonal elements represent inter-construct correlations.

Table 9 shows the goodness-of-fit statistics for the structural model. All indices satisfy the recommended thresholds, indicating that the proposed structural relationships fit the data well. Specifically, the χ^2/df ratio is 1.201 (< 3.00), suggesting a small discrepancy between the observed and model-implied covariance matrices. The RMSEA is 0.021 (< 0.08), demonstrating a close approximate fit.

In addition, the absolute and incremental fit indices are consistently above 0.90 (GFI = 0.915; AGFI = 0.903; NFI = 0.918; TLI = 0.984; CFI = 0.985), providing further evidence of strong model fit. Collectively, these results support the adequacy of the hypothesized structural model for interpreting path estimates and mediation effects.

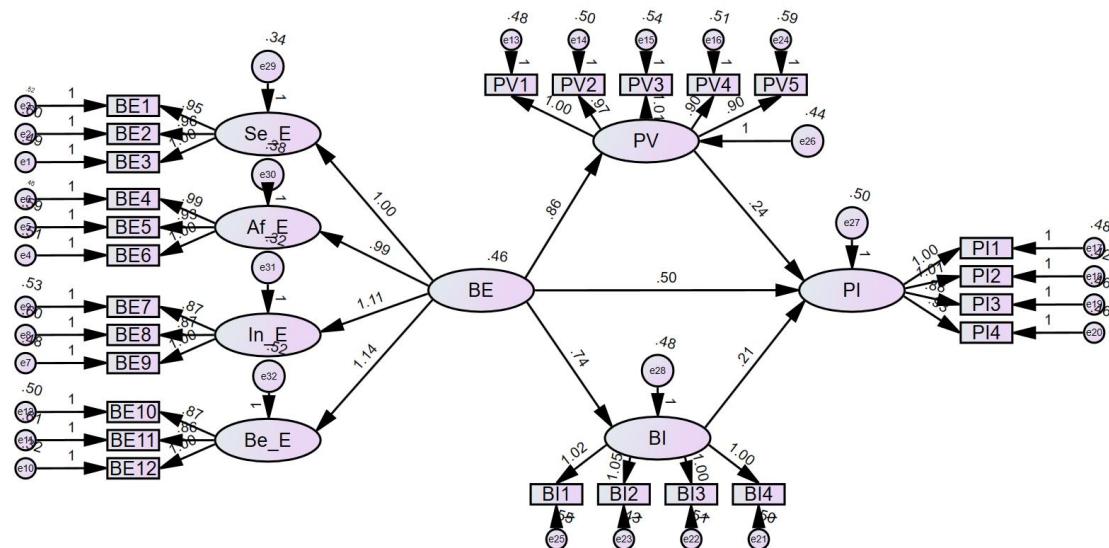


Figure 2 AMOS output of Path Diagram for the structural model

Table 9 Structural Model Fit Metrics

Fit index	χ^2/df	RMSEA	GFI	AGFI	NFI	TLI	CFI
Recommended threshold	< 3.00	< 0.08	> 0.90	> 0.90	> 0.90	> 0.90	> 0.90
Model result	1.201	0.021	0.915	0.903	0.918	0.984	0.985

Table 10 presents the SEM path estimates for hypothesis testing. All hypothesized direct effects are statistically significant and in the expected positive direction. Brand experience exerts strong effects on both perceived value ($BE \rightarrow PV: \beta = 0.660, p < .001$) and brand identification ($BE \rightarrow BI: \beta = 0.589, p < .001$), suggesting that richer brand experiences simultaneously strengthen consumers' value evaluations and identity-based connection with the brand. Both mechanisms, in turn, positively predict purchase intention

($PV \rightarrow PI: \beta = 0.223, p = .002; BI \rightarrow PI: \beta = 0.195, p = .003$), indicating that consumers are more willing to purchase when they perceive higher overall value and feel stronger identification. Notably, brand experience also retains a significant direct effect on purchase intention ($BE \rightarrow PI: \beta = 0.358, p < .001$), implying partial mediation: beyond its indirect influence via perceived value and brand identification, brand experience independently enhances consumers' purchase intention.

Table 10 Structural Path Coefficients

Hypothesis	Path	Estimate	β	S.E.	C.R.	p	Result
H1	$BE \rightarrow PV$	0.860	0.660	0.095	9.044	< 0.001	Supported
H2	$BE \rightarrow BI$	0.742	0.589	0.090	8.264	< 0.001	Supported
H3	$PV \rightarrow PI$	0.238	0.223	0.076	3.130	0.002	Supported
H4	$BI \rightarrow PI$	0.214	0.195	0.071	3.013	0.003	Supported
H5	$BE \rightarrow PI$	0.497	0.358	0.122	4.064	< 0.001	Supported

Table 11 summarizes the bootstrap results for direct, indirect, and total

effects. All direct paths are statistically significant, as the 95% confidence intervals (CIs) do not include zero: brand experience positively predicts perceived value (BE → PV: $\beta = 0.660$, 95% CI [0.521, 0.798]) and brand identification (BE → BI: $\beta = 0.589$, 95% CI [0.453, 0.732]), and both perceived value and brand identification significantly enhance purchase intention (PV → PI: $\beta = 0.223$, 95% CI [0.082, 0.365]; BI → PI: $\beta = 0.195$, 95% CI [0.071, 0.326]). Importantly, brand experience also has a significant direct effect on purchase intention (BE → PI: $\beta = 0.358$, 95% CI [0.185, 0.528]). In addition, two parallel indirect effects are

supported: BE increases purchase intention through perceived value (BE → PV → PI: $\beta = 0.147$, 95% CI [0.056, 0.259]) and through brand identification (BE → BI → PI: $\beta = 0.115$, 95% CI [0.043, 0.203]). Because both indirect paths and the direct effect remain significant, the findings indicate partial mediation, meaning brand experience influences purchase intention both directly and via value-based and identity-based mechanisms. Consistent with this, the total effect of brand experience on purchase intention is substantial and significant ($\beta = 0.620$, 95% CI [0.473, 0.768]).

Table 11 Direct, Indirect, and Total Effects of Brand Experience on Purchase Intention

Path	Effect type	Estimate	S.E.	95% CI Lower	95% CI Upper	Interpretation
BE → PV	Direct	0.660	0.073	0.521	0.798	Significant
BE → BI	Direct	0.589	0.071	0.453	0.732	Significant
PV → PI	Direct	0.223	0.071	0.082	0.365	Significant
BI → PI	Direct	0.195	0.065	0.071	0.326	Significant
BE → PI	Direct	0.358	0.088	0.185	0.528	Significant
BE → PV → PI	Indirect	0.147	0.052	0.056	0.259	Significant
BE → BI → PI	Indirect	0.115	0.041	0.043	0.203	Significant
BE → PI (Total)	Total	0.620	0.076	0.473	0.768	Significant

5. Discussion and Conclusion

The findings provide consistent support for the proposed S-O-R framework in the NEV context. Brand experience exerts strong positive effects on perceived value ($\beta = 0.660$, $p < .001$) and brand identification ($\beta = 0.589$, $p < .001$), indicating that experiential stimuli simultaneously activate consumers' cognitive evaluations and identity-based connections. Both perceived value ($\beta = 0.223$, $p = .002$)

and brand identification ($\beta = 0.195$, $p = .003$) significantly increase purchase intention, while brand experience also retains a direct effect on purchase intention ($\beta = 0.358$, $p < .001$). Bootstrap results further confirm two significant indirect effects—via perceived value ($\beta = 0.147$, 95% CI [0.056, 0.259]) and via brand identification ($\beta = 0.115$, 95% CI [0.043, 0.203])—indicating partial mediation and suggesting that brand experience

influences intention through both value-based and identity-based routes.

The study contributes to the literature by extending brand experience research to technology-intensive durable goods and by clarifying a dual-mechanism explanation of how experience converts into purchase intention. Practically, the results imply that Xiaomi Auto and NEV marketers should treat experience design as a strategic lever: (i) enhance multi-touchpoint experiences (e.g., test drives, showrooms, digital demonstrations) that make intelligent features tangible; (ii) explicitly translate experience into value perceptions through clear cost-benefit cues and usage scenarios; and (iii) strengthen brand identification by leveraging ecosystem/community strategies (e.g., owner communities, co-creation, and innovation-lifestyle narratives). Future research may improve generalizability by using multi-city or cross-brand samples, and strengthen causal inference through longitudinal or experimental designs while incorporating additional mediators (e.g., trust, perceived innovativeness) and moderators (e.g., technology readiness, price sensitivity).

Overall, this study demonstrates that brand experience is a central driver of consumers' purchase intention toward Xiaomi Auto NEVs, operating both directly and indirectly through perceived value and brand identification. By integrating cognitive and identity pathways within an S-O-R framework, the research offers a parsimonious explanation of experience-driven intention formation in the emerging NEV market and provides actionable

guidance for experience-centered branding strategies.

References

Acar, A., Büyükdağ, N., Türten, B., Diker, E., & Çalışır, G. (2024). The role of brand identity, brand lifestyle congruence, and brand satisfaction on repurchase intention: a multi-group structural equation model. *Humanities and Social Sciences Communications*, 11(1), 1102. <https://doi.org/10.1057/s41599-024-03618-w>

Alyahya, M., Agag, G., Aliedan, M., & Abdelmoety, Z. H. (2023). Understanding the factors affecting consumers' behaviour when purchasing refurbished products: A chaordic perspective. *Journal of Retailing and Consumer Services*, 75, 103492. <https://doi.org/10.1016/j.jretcons.2023.103492>

Baghel, D. (2023). The Role of Influencer Authenticity and Brand Trust in Shaping Consumer Behavior: Strategies to Engage Generation Z. *ShodhKosh: Journal of Visual and Performing Arts*, 4(1), 3327. <https://doi.org/10.29121/shodhko sh.v4.i1.2023.3327>

Blut, M., Chaney, D., Lunardo, R., Mencarelli, R., & Grewal, D. (2023). Customer Perceived Value: A Comprehensive Meta-analysis. *Journal of Service Research*, 27, 0043023. <https://doi.org/10.1177/10946705231222295>

Castro-González, S., Bande, B., & Fernández-Ferrín, P. (2025). "I love your brand! I engage with you, and I do online brand-related activities (COBRAs)": the role of brand value. *European Journal of Management and Business Economics*, 34(3), 359-383. <https://doi.org/10.1108/EJMBE-10-2023-0331>

Chen, S. (2025). Xiaomi Auto Marketing Strategy: SWOT and 4P Analysis. *Advances in Economics, Management and Political Sciences*, 245, 1-7. <https://doi.org/10.54254/2754-1169/2025.BL29961>

DelVecchio, D., Jones, W. J., & Baugh, L. (2024). From easy to known: How fluent brand processing fosters self-brand connection. *Psychology & Marketing*, 41(4), 754-773. <https://doi.org/10.1002/mar.21951>

Gandhi, M., Ubba, S., & Jyoti. (2023). Effect of Consumer Value Perception on Consumer Purchase Intention: A Case of Private Label Apparels. *Global Business Review*, 09721509231166256. <https://doi.org/10.1177/09721509231166256>

Gaustad, T., & Warlop, L. Self-Brand Connections: Motivations, Origins, and Outcomes. In The Routledge Handbook of Identity and Consumption, 438-448. <https://doi.org/10.4324/9781003383628-38>

Harahap, M., Soemitra, A., & Rahma, T. (2024). Market Penetration Strategy by Increasing Firm Competitiveness. *Golden Ratio of Marketing and Applied Psychology of Business*, 5, 44-52. <https://doi.org/10.52970/grmapb.v5i1.712>

Hochreiter, V., Benedetto, C., & Loesch, M. (2023). The Stimulus-Organism-Response (S-O-R) Paradigm as a Guiding Principle in Environmental Psychology: Comparison of its Usage in Consumer Behavior and Organizational Culture and Leadership Theory. *Journal of entrepreneurship and business development*, 3, 7-16. <https://doi.org/10.18775/jebd.31.5001>

Hu, X., Yusof, R. N. R., & Mansor, Z. D. (2025). Consumers' Purchase Intentions Towards New Energy Vehicles Based on the Theory of Planned Behaviour on Perceived Value: An Empirical Survey of China. *World Electric Vehicle Journal*, 16(3), 120. <https://doi.org/10.3390/wevj16030120>

Huang, W. (2025, August). Model Innovation on Corporate Performance in the Context of Digital Economy--the Case of Xiaomi Automobile. In 2025 5th International Conference on Enterprise Management and Economic Development (ICEMED 2025), 752-758. https://doi.org/10.2991/978-94-6463-811-0_79

Husain, R., Paul, J., & Koles, B. (2022). The role of brand experience, brand resonance and brand trust

in luxury consumption. *Journal of Retailing and Consumer Services*, 66, 102895. <https://doi.org/10.1016/j.jretcons.2021.102895>

Irshad, O., Ahmad, S., & Mahmood, S. (2024). Fostering purchase intentions through CSR and service quality: the role of customer satisfaction, brand loyalty, and admiration. *Sustainability*, 16(23), 10584. <https://doi.org/10.3390/su162310584>

Jayadi, J., Putra, E., & Murwani, I. (2022). The Implementation of S-O-R Framework (Stimulus, Organism, and Response) in User Behavior Analysis of Instagram Shop Features on Purchase Intention. *Scholars Journal of Engineering and Technology*, 10, 42-53. <https://doi.org/10.36347/sjet.2022.v10i04.003>

Li, L. (2025). The Impact of the Low-Carbon Transition in the New Energy Vehicle Industry on the Ecological Environment and Economic Structure. *MATEC Web of Conferences*, 410,02017. <https://doi.org/10.1051/matecconf/202541002017>

Li, M., & Chung, W. (2025). Enhancing brand experience and brand authenticity: The role of octomodal mental imagery and social presence. *Plos one*, 20(4), e0321883. <https://doi.org/10.1371/journal.pone.0321883>

Li, Z., Zhang, D., Zhang, Q., & Liu, X. (2023). Constructing online destination brand experience and bilateral behavioral intentions: a sensory conduction perspective. *Current Issues in Tourism*, 26(20), 3364-3380. <https://doi.org/10.1080/13683502.2022.2122782>

Lian, Y., Deprasert, J., & Jiang, S. (2025). Cognitive-Affective Negotiation Process in Green Food Purchase Intention: A Qualitative Study Based on Grounded Theory. *Foods*, 14(16), 2856. <https://doi.org/10.3390/foods14162856>

Liu, W., & Xie, T. (2025). The Impact of New Energy Vehicle Industry Agglomeration on High-Quality Green Development—Evidence from China. *World Electric Vehicle Journal*, 16(7), 369. <https://doi.org/10.3390/wevj16070369>

Méndez-Lazarte, C., Galdo-Jiménez, A., Ghouleh-Grndl, A., Yance-Morales, X., & Bohorquez-Lopez, V. (2025). Virtual brand communities unveiled: A comprehensive bibliometric exploration. *Digital Business*, 5(2), 100122. <https://doi.org/10.1016/j.digbus.2025.100122>

Moorlock, E., Dekel-Dachs, O., Stokes, P., & Larsen, G. (2023). Constructing Consumer-Masstige brand relationships in a volatile social reality. *Journal of Business Research*, 155, 113381. <https://doi.org/10.1016/j.jbusres.2022.113381>

Muthaffar, A., Vilches-Montero, S., & Bravo-Olavarria, R. (2024). From digital touchpoints to

digital journeys: How shopping mindsets influence appraisal of omnichannel journeys. *International Journal of Information Management*, 77, 102778. <https://doi.org/10.1016/j.ijinfomgt.2024.102778>

Na, M., Rong, L., Ali, M. H., Alam, S. S., Masukujaman, M., & Ali, K. A. M. (2023). The Mediating Role of Brand Trust and Brand Love between Brand Experience and Loyalty: A Study on Smartphones in China. *Behavioral Sciences (Basel)*, 13(6), 52. <https://doi.org/10.3390-bs13060502>

Pina, R., & Dias, Á. (2021). The influence of brand experiences on consumer-based brand equity. *Journal of Brand Management*, 28(2), 99-115. <https://doi.org/10.1057/s41262-020-00215-5>

Pine, B. J., & Gilmore, J. H. (2013). The experience economy: past, present and future. In *Handbook on the experience economy*, 21-44. <https://doi.org/10.4337/9781781004227.00007>

Rao, U., Ali, M., & Rubab, S. (2024). Unveiling the Power of Storytelling: A Comparative Analysis of Consumer vs. Brand Narratives in Shaping Favorable Attitude Toward Brands Through Emotions and Cognition. *International Journal of Management Research and Emerging Sciences*, 14(3), 609. <https://doi.org/10.56536/ijmres.v14i3.609>

Rocklage, M. D., Berger, J., & Boghrati, R. (2025). The Trajectory of Confidence: Experience, Certainty, and Consumer Choice. *Journal of Marketing Research*, 00222437251372928. <https://doi.org/10.1177/00222437251372928>

Sang, V. M., & Cuong, M. C. (2025). The influence of brand experience on brand loyalty in the electronic commerce sector: the mediating effect of brand association and brand trust. *Cogent Business & Management*, 12(1), 2440629. <https://doi.org/10.1080/23311975.2024.2440629>

Tahir, A. H., Adnan, M., & Saeed, Z. (2024). The impact of brand image on customer satisfaction and brand loyalty: A systematic literature review. *Heliyon*, 10(16), e36254. <https://doi.org/10.1016/j.heliyon.2024.e36254>

Tang, Y., & Son, H. (2025). How Perceived Value Drives Usage Intention of AI Digital Human Advisors in Digital Finance. *Systems*, 13(11), 973. <https://doi.org/10.3390/systems13110973>

Tran, V.-D., & Nguyen, N. (2022). Investigating the relationship between brand experience, brand authenticity, brand equity, and customer satisfaction: Evidence from Vietnam. *Cogent Business & Management*, 9, 2084968. <https://doi.org/10.1080/23311975.2022.2084968>

Wang, Y. (2025). Exploration of Xiaomi's Automotive Marketing

Strategy. *Finance & Economics*, 1(3),35.<https://doi.org/10.61173/jzvv5035>

Wang, Y., & Tian, Y. (2023). The Impact of New Energy Vehicle Product Attributes on Consumer Purchase Intention in the Backdrop of Sustainable Development Goals. *Sustainability*, 15, 1989. <https://doi.org/10.3390/su15031989>

Wei, S., Xu, H., Zheng, S., & Chen, J. (2024). Research on the Impact of New Energy Vehicle Companies' Marketing Strategies on Consumers' Purchase Intention. *Sustainability*, 16, 4119.<https://doi.org/10.3390/su16104119>

Zha, D., Foroudi, P., Jin, Z., & Melewar, T. (2022). Making sense of sensory brand experience: Constructing an integrative framework for future research. *International Journal of Management Reviews*, 24(1), 130-167.<https://doi.org/10.1111/jmr.12270>

Zha, D., Foroudi, P., Melewar, T. C., & Jin, Z. (2025). Examining the Impact of Sensory Brand Experience on Brand Loyalty. *Corporate Reputation Review*, 28(1), 14-42. <https://doi.org/10.1057/s41299-023-00175-x>

Zhang, J., Islam, M. S., Jambulingam, M., Lim, W. M., & Kumar, S. (2024). Leveraging environmental corporate social responsibility to promote green purchases: The case of new energy vehicles in the era of sustainable development. *Journal of Cleaner Production*, 434, 139988. <https://doi.org/10.3390/wevj16070369>

Zhang, Z., & Liu, X. (2022). Consumers' preference for brand prominence in the context of identity-based consumption for self versus for others: The role of self-construal. *Journal of Global Scholars of Marketing Science*, 32(4), 530-553.<https://doi.org/10.1080/21639159.2021.2019600>

Zhao, W., & Yi, L. (2023). Product innovation logic under the open innovation ecosystem: A case study of Xiaomi (China). *Technology Analysis & Strategic Management*, 35(6), 659-675. <https://doi.org/10.1080/09537325.2021.1980208>